Toward single-walled carbon nanotube-gadolinium complex as advanced MRI contrast agents: pharmacodynamics and global genomic response in small animals.
نویسندگان
چکیده
Gadolinium nanoparticle-catalyzed single-walled carbon nanotubes (Gd-SWCNTs) have recently shown potential in vitro as high-performance T1 magnetic resonance imaging (MRI) contrast agents (CAs). Their preclinical safety assessment at nontoxic dosages is essential for MRI applications. Herein, the in vivo (in rats) pharmacodynamics of Gd-SWCNTs (water solubilized with the amphiphilic polymer PEG-DSPE) at the organ, tissue, molecular, and genetic level is reported. Gd-SWCNT, commercially available iron catalyzed SWCNTs (Fe-SWCNTs, control 1) and PEG-DSPE (control 2) solutions were intravenously injected at a potential nontoxic therapeutic dose (0.5 mg/kg body weight, single bolus). Postinjection, bright-field optical microscopy showed their macroscale distribution in lung, liver, kidney, brain, and spleen up to 5 days. Raman and transmission electron microscopy (TEM) showed their presence at the nanoscale within hepatocytes. Their effects on the host organ tissue, molecular, and genetic level were analyzed after 1, 5, 10, 20, and 30 days by histology, biomolecular [lipid peroxidation, plasma tumor necrosis factor TNF-α assay, microarrays] assays. The results indicate that Gd-SWCNTs neither cause any inflammation, nor damage to the above organs, nor any significant change in the lipid peroxidation or plasma proinflammatory cytokine (TNF-α) levels for all the groups at all time points. Global gene expression profile of liver (main organ for the metabolism) after day 1 treatment with Gd-SWCNTs shows that the gene regulation is directed toward maintaining normal homeostasis. The results taken together indicate that PEG-DSPE water-solubilized Gd-SWCNTs at potentially nontoxic dosages have pharmacodynamics similar to other commercially available Fe-SWCNTs and are suitable for future preclinical development as in vivo MRI CAs.
منابع مشابه
Theoretical Study on the Chemical Reactivity in the Armchair Single-walled Carbon Nanotube: Proton and Methyl Group Transfer
Proton transfer (PT) and methyl group transfer (MGT) occurring in small biomimetic systems, Formamide-Formamidic acid (FA-FI), and N-formyl-N-methylformamide-(E)-methyl N-formylformimidate (NMFA-NMFI) are investigated in the gas phase and in single-walled carbon nanotubes by using the density functional theory and the ONIOM approach. It is shown that PT reaction is disfavoured in single-walled ...
متن کاملTheoretical study of functionalized single-walled carbon nanotube (5, 5) with Mitoxantrone drug
Objective(s): First principles calculations were performed to study four multiple sclerosis drugs namely, Ampyra, Fingolimod, Mitoxantrone and Eliprodil in gas and liquid phases using Density Functional Theory (DFT). Computational chemistry simulations were carried out to compare calculated quantum chemical parameters for Ampyra, Fingolimod, Mitoxantrone and Eliprodil. Materials and Methods: Al...
متن کاملThe effect of small scale on the vibrational behavior of single-walled carbon nanotubes with a moving nanoparticle
In this paper, free and forced vibration of simply-supported Single-walled carbon nanotube is investigated under the moving nanoparticle by considering nonlocal cylindrical shell model. To validate the theoretical results, modal analysis of nanotube is conducted using ANSYS commercial software. Excellent agreement is exhibited between the results of two different methods. Furthermore, the dynam...
متن کاملMRI Contrast Agent: Magnetic Property Characterization by SQUID Magnetometry
Introduction Ultra-short, single-walled carbon nanotube capsules internalized with paramagnetic gadolinium-ion clusters (Gadonanotubes), see Figure 1, possess the unusual ability to cause marked shortening of both T1 and T2 (1,2). In this work we report the magnetic properties of the Gadonanotubes that underlie the significantly shortened T1 and T2 * relaxation times. Thus, the Gadonanotubes re...
متن کاملDynamic Stability of Single Walled Carbon Nanotube Based on Nonlocal Strain Gradient Theory
This paper deals with dynamic Stability of single walled carbon nanotube. Strain gradient theory and Euler-Bernouli beam theory are implemented to investigate the dynamic stability of SWCNT embedded in an elastic medium. The equations of motion were derived by Hamilton principle and non-local elasticity approach. The nonlocal parameter accounts for the small-size effects when dealing with nano-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biomedical materials research. Part B, Applied biomaterials
دوره 101 6 شماره
صفحات -
تاریخ انتشار 2013